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Abstract
A nonpolynomial one-dimensional quantum potential representing an
oscillator, which can be considered as placed in the middle between the
harmonic oscillator and the isotonic oscillator (harmonic oscillator with a
centripetal barrier), is studied. First the general case, that depends on a
parameter a, is considered and then a particular case is studied with great
detail. It is proven that it is Schrödinger solvable and then the wavefunctions
�n and the energies En of the bound states are explicitly obtained. Finally,
it is proven that the solutions determine a family of orthogonal polynomials
Pn(x) related to the Hermite polynomials and such that: (i) every Pn is a linear
combination of three Hermite polynomials and (ii) they are orthogonal with
respect to a new measure obtained by modifying the classic Hermite measure.

PACS numbers: 03.65.−w, 03.65.Ge, 02.30.Gp
Mathematics Subject Classification: 81Q05, 81U15, 33C45

1. Introduction

It is well known that, in quantum mechanics, the family of Schrödinger solvable potentials
is very restricted and also that exact solvability is a very delicate property (see [1] for a
review and [2–11] for some recent papers on this matter). In fact, in most of cases, the
addition of a small perturbation to a quantum solvable system breaks this property and leads
to potentials that must be analysed by the use of perturbative methods, variational formalisms
or numerical techniques. The most interesting and best known system inside this small family
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is the harmonic oscillator whose energy spectrum consists of an infinite set of equidistant
energy levels. Many other oscillators, as for example harmonic oscillators perturbed by a
term containing a fourth or a sixth power in the coordinate, have been extensively studied
but making use of the above-mentioned techniques. Nevertheless, it is known the existence
of another oscillator, the so-called isotonic oscillator, that is exactly solvable and is endowed
with many interesting properties.

The main aim of this paper is to present an study of a new nonpolynomial one-dimensional
quantum potential representing an oscillator, which can be considered as placed in the middle
between the harmonic oscillator and the isotonic oscillator. We will prove that it is exactly
solvable and that the energy spectrum and the wavefunctions have properties closely related
to those characterizing the harmonic oscillator.

In more detail, the plan of the paper is as follows. In section 2, we recall the main
characteristics of the isotonic oscillator. In section 3, we present a new potential depending of
a parameter a; first, we study the general case and then we solve the particular case a2 = 1/2
obtaining the wavefunctions and energy spectrum. Section 4 is devoted to analysing a family
of orthogonal polynomials and to studying the relation with the Hermite polynomials. Finally,
in section 5 we make some final comments.

2. The isotonic oscillator

The following potential:

UIsot(x) = U0(x) + Ug(x) =
(

1

2

)
ω2x2 +

(
1

2

)
g

x2
, g > 0,

representing an harmonic oscillator with a centripetal barrier, is known as the isotonic oscillator
[12, 13]. It is important because it is endowed with properties closely related to those of
the harmonic oscillator. At the classical level it leads to periodic solutions with the same
period (isochronous potential [14]) and at the quantum level it is Schrödinger solvable, the
Hamiltonian is factorizable [15] and the energy spectrum is equidistant. Moreover, it is related
to supersymmetric quantum mechanics [16]. The two-dimensional version is superintegrable
and corresponds to the so-called Smorodinsky–Winternitz system and the centripetal term
relates it with the Calogero–Moser system. In addition to all these theoretical properties, this
particular nonlinear oscillator is important in quantum optics and in the theory of coherent
states [17, 18].

The classical Lagrange equation, that is given by

ẍ + ω2x − g

x3
= 0,

is a particular case of the Pinney–Ermakov equation [19]. It can be exactly solved and the
solution is given by

x = 1

ωA

√
(ω2A4 − g) sin2(ωt + φ) + g,

showing explicitly the above-mentioned periodicity. At the quantum level it is convenient to
write g in the way g = m(m + 1) (the constant g should be greater than −1/4 and m can be
any real number but we will always take it as non-negative) so that the Schrödinger equation
takes the form

d2

dx2
� −

[
ω2x2 +

m(m + 1)

x2

]
� + 2E� = 0,

2
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where we assume h̄ = 1 for easy of notation. The simplest solution, representing the ground
state, is

�0 = N0x
1+m exp

(− 1
2ωx2

)
, E0 = (

3
2 + m

)
ω,

and all the other wavefunctions and eigenenergies are given by

�2n = N2nx
1+mP2n(x) exp

(− 1
2ωx2

)
, E2n = E0 + 2nω,

where P2n(x) is a polynomial of order 2n with only even powers of x and N2n denotes the
normalization constant. The energy spectrum is equidistant since

E2n+2 = E2n + 2ω, n = 0, 1, 2, . . . .

Nevertheless, the height �E of the energy steps is twice that of the simple harmonic oscillator
U0. In fact, it seems as if half of the levels (those with an odd number of nodes) have
disappeared.

3. A new solvable potential

We now turn our attention to the study of the one-dimensional quantum system described by
the following potential:

U0a(x) = U0(x) + Ua(x) =
(

1

2

) [
ω2x2 + 2ga

x2 − a2

(x2 + a2)2

]
, ga > 0,

where a is a positive real parameter. The reason for this particular algebraic expression is that
the new additional term can be written as the sum of two centripetal barriers in the complex
plane

2
x2 − a2

(x2 + a2)2
= 1

(x + ia)2
+

1

(x − ia)2
,

so it is a rational potential with two imaginary poles symmetric with respect the origin.
Actually, if ga remains constant, then when a goes to zero and to ∞ the potential U0a(x)

converges to the isotonic and the harmonic oscillator, respectively.
The first important property is that if the coefficient ga is not arbitrary but given by

ga = 2ωa2(1 + 2ωa2) then the Schrödinger equation, that takes the form

d2

dx2
� −

[
ω2x2 + 4ωa2(1 + 2ωa2)

x2 − a2

(x2 + a2)2

]
� + 2E� = 0, (1)

admits the following solution:

�0 = N0

(a2 + x2)2ωa2 exp

(
−1

2
ωx2

)
, E0 = 1

2
ω − (2ωa)2. (2)

It represents the ground level (�0 has no nodes) and it clearly shows that when a → 0 then
the corresponding wavefunction and ground-level energy of the linear oscillator is obtained.
We also note that the above expression ga = 2ωa2(1 + 2ωa2) can alternatively be written as
ga = ma(ma + 1) with ma = 2ωa2.

In the following, we will focus our study on the particular case a2 = 1/2,ma = ω (see
figure 1) represented by the equation

d2

dx2
� −

[
x2 + 8

2x2 − 1

(2x2 + 1)2

]
� + 2E� = 0 (3)

3
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Figure 1. Plot of the potential U0a(x) for ω = 1 as a function of x for a2 = 1/2 (continuous line)
together with the plot of the harmonic oscillator (dash line). The main difference lies in the form
of the minimum that is much deeper in the U0a(x) case than in the linear case. Nevertheless, for
great values of |x| the two functions have rather the same form.

so that �0 and E0 become

�0(x) = N0

1 + 2x2
exp

(
−1

2
x2

)
, E0 = −3

2
, (4)

where we have assumed ω = 1 for easy of notation.
As a method for obtaining all the other eigenstates we assume that the functions �(x)

can be factorized in the form

�(x) = F(x)�0(x)

and, as the lowest energy is E0 = −3/2, it seems appropriate to write the general energy E as
follows:

E = − 3
2 + e.

Then the Schrödinger equation (3) leads to the following equation for the function F(x):

(1 + 2x2)F ′′ − 2x(5 + 2x2)F ′ + 2e(1 + 2x2)F = 0. (5)

Since the origin x = 0 is an ordinary point we expect an analytic solution F with a
power-series expansion convergent in the interval (−R,R) with the radius of convergence R
given by R = 1/

√
2,

F (x) =
∞∑

n=0

pnx
n = p0 + p1x + p2x

2 + p3x
3 + · · ·

that when replaced in (5) leads to

2(p2 + ep0) + [6p3 + 2(e − 5)p1]x +
∞∑

m=0

[(m + 4)(m + 3)pm+4

+ 2[(m + 2)(m − 4) + e]pm+2 + 4(e − m)pm]xm+2 = 0. (6)

Therefore, we first obtain the following two relations for the first coefficients p0, p2 and p1, p3:

p2 + ep0 = 0, 3p3 + (e − 5)p1 = 0,

and then the general recursion relation

(m + 4)(m + 3)pm+4 + 2[(m + 2)(m − 4) + e]pm+2 + 4(e − m)pm = 0, m = 0, 1, 2, . . . .

4
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Hence the recurrence relation involves three different terms (pm+4 depends of both pm+2 and
pm) and is constrained by the two first relations that are not included in the general rule. In any
case even coefficients are related among themselves and the same is true for odd coefficients.
The general solution will be obtained by fixing the values of p0 and p1, i.e. the value F(0) and
F ′(0). The solution determined by F(0) = 1, F ′(0) = 0 is even (only contains even powers)
while the one determined by F(0) = 0, F ′(0) = 1 only contains odd powers of x. Actually
the expressions of the first coefficients, in terms of p0 and p1, are given by

p2 = −ep0 p8 = 24

8!
(e − 50)(e − 6)(e − 4)ep0

p4 = 22

4!
(e − 10)ep0 p10 = − 25

10!
(e − 82)(e − 8)(e − 6)(e − 4)ep0

p6 = −23

6!
(e − 26)(e − 4)ep0 · · ·

and

p3 = − 2

3!
(e − 5)p1 p9 = 24

9!
(e − 65)(e − 7)(e − 5)(e − 3)p1

p5 = 22

5!
(e − 17)(e − 3)p1 p11 = − 25

11!
(e − 101)(e − 9)(e − 7)(e − 5)(e − 3)p1

p7 = −23

7!
(e − 37)(e − 5)(e − 3)p1 · · · .

In the particular case in which e is an even integer number e = 2k, with k = 3, 4, 5, . . . , all
the coefficients p2(k+r) vanish and the series reduces to a polynomial of degree k in powers of
x2, P2k(x). Similarly, when e is an odd integer number e = 2k + 1, with k = 2, 3, 4, . . . , all
the coefficients p2(k+r)+1 with r > 1 vanish, and the series reduces to a polynomial P2k+1 with
only odd powers of x. The first polynomial solutions are
P0 = 1

P4 = 1 − 4x2 − 4x4

P6 = 1 − 6x2 − 4x4 + 8
3x6

P8 = 1 − 8x2 − 8
3x4 + 32

5 x6 − 16
15x8

P10 = 1 − 10x2 + 32
3 x6 − 80

21x8 + 32
105x10

P3 = x + 2
3x3

P5 = x − 4
5x5

P7 = x − 2
3x3 − 4

3x5 + 8
21x7

P9 = x − 4
3x3 − 8

5x5 + 16
15x7 − 16

135x9.

The two important properties are: first, there are no polynomial solutions of degree k = 1 and
k = 2; and second, all of them have two complex conjugate roots, so that P3 has an unique
real zero, P4 has two real zeros and, in the general case, P2k and P2k+1 with k > 1 have 2k − 2
and 2k − 1 real zeros, respectively.

Another remarkable property is that when the polynomials Pn are expressed as linear
combination of Hermite polynomials then only a finite number of terms are different from
zero. We have obtained the following relations for the first cases:

P4 = −4H0 − 4H2 − 1
4H4

P6 = 3H2 + H4 + 1
24H6

P8 = − 2
3H4 − 2

15H6 − 1
240H8

P10 = 1
12H6 + 1

84H8 + 1
3360H10

P3 = H1 + 1
12H3

P5 = −H1 − 1
2H3 − 1

40H5

P7 = 1
3H3 + 1

12H5 + 1
336H7

P9 = − 1
20H5 − 1

120H7 − 1
4320H9.

These particular relations clearly suggest that each polynomial P2k can be written as a linear
combination of H2k and the two previous even Hermite polynomials, H2k−2 and H2k−4;
similarly, the odd polynomial P2k+1 appears as a linear combination of only H2k+1,H2k−1 and
H2k−3.

5
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4. Wavefunctions and orthogonality relations

The differential equation (5) is not in selfadjoint form because, if we denote by a0, a1 and a2

the three coefficients of the equation, we have

a0 = 1 + 2x2, a1 = −2x(5 + 2x2),
da0

dx
�= a1.

However, use can be made of an integrating factor µ(x) such that

d

dx
[µ(x)a0(x)] = µ(x)a1(x),

so that µ(x) is given by

µ(x) =
(

1

a0

)
e
∫
(a1/a0) dx = e−x2

(1 + 2x2)3
,

in such a way that (5) becomes

d

dx

[
p(x)

dF

dx

]
+ 2er(x)F = 0,

where the two functions p = p(x) and r = r(x) are given by

p(x) = e−x2

(1 + 2x2)2
, r(x) = e−x2

(1 + 2x2)2
.

This equation, with the appropriate conditions for the behaviour of the solutions at the end
points, constitutes a Sturm–Liouville (S–L) problem, defined in the real line R. According to
this, the eigenfunctions of the S–L problem are orthogonal with respect to the weight function
r = e−x2

/(1 + 2x2)2, and, in particular, the polynomial solutions Pm,m = 0, 3, 4, . . . , of the
differential equation (5), satisfy the orthogonality conditions∫ ∞

−∞
Pm(x)Pn(x)

e−x2

(1 + 2x2)2
dx = 0, m �= n.

Let us now return to equation (5) and suppose for F ′ the following factorization:

F ′ = (1 + 2x2)G.

Then we arrive after some calculus (we omit the details) to the following equation for the
function G:

G′′ − 2xG′ + 2(e − 3)G = 0,

that means that the derivative P ′
n(x) of the polynomial Pn(x) must satisfy

P ′
n = (1 + 2x2)Hn−3, e = n, n = 3, 4, 5, . . .

(up to a multiplicative constant). At this point we recall the following two properties of the
Hermite polynomials:

(i) 2xHm = Hm+1 + 2mHm−1

(ii) H ′
m = 2mHm−1.

(7)

Then making use of (i) we arrive to

P ′
n = 1

2 [Hn−1 + 4(n − 2)Hn−3 + 4(n − 3)(n − 4)Hn−5],

and making use of (ii) and then integrating we obtain

Pn = 1

4n
[Hn + (4n)Hn−2 + (4n)(n − 3)Hn−4].

6
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(a) (b)

Figure 2. (a) Polynomials P3 (dash line) and P4 (continuous line). P3 has a unique real zero at
the origin and P4 has two real zeros (symmetric with respect the origin). (b) Polynomials P5 (dash
line) and P6 (continuous line). P5 has three real zeros (the origin and two other placed symmetric)
and P6 has four zeros (two positive and two negative).

It seems convenient to multiply Pn by 4n and introduce the new family of polynomials Pn

defined in the form

Pn = Hn + 4nHn−2 + 4n(n − 3)Hn−4, n = 3, 4, 5, . . . , (8)

so that the coefficient of Hn (the dominant term in the expression of Pn) reduces to unity.

Proposition 1. The following equality holds:

2nPn e−x2

(1 + 2x2)2
= − d

dx

[
Hn−3

1 + 2x2
e−x2

]
, n = 3, 4, 5, . . .

Proof. This statement is proven just by making the calculus. �

Now we can write∫ ∞

−∞

Pm(x)Pn(x)

(1 + 2x2)2
e−x2

dx = −(16 nm)

∫ ∞

−∞

1

2m

d

dx

[
Hm−3

1 + 2x2
e−x2

]
Pn(x) dx

and integrating by parts we arrive to∫ ∞

−∞

Pm(x)Pn(x)

(1 + 2x2)2
e−x2

dx = (8n)

∫ ∞

−∞

[
Hm−3

1 + 2x2
e−x2

]
P ′

n(x) dx

= (8n)

∫ ∞

−∞
Hm−3Hn−3 e−x2

dx

= δmn(8n)[2n−3(n − 3)!
√

π ]. (9)

So, we relate the problem of normalization to the standard problem of Hermite polynomials.
Hence the orthogonality conditions for the family Pn(x) read∫ ∞

−∞
Pm(x)Pn(x)r(x) dx = δmn

∫ ∞

−∞

[Pn(x)]2

(1 + 2x2)2
e−x2

dx = kn(2
nn!

√
π),

where the proportionality constant kn is given by

kn = 1

(n − 1)(n − 2)
.

See figures 2(a) and (b) for the plot of some of these polynomials.
If we define the P-Hermite functions �m by

�m(x) = Pm(x)

(1 + 2x2)
e−(1/2)x2

, m = 0, 3, 4, . . . ,

7
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Figure 3. Wavefunction �0 (continuous line) and wavefunction �0 of the harmonic oscillator
(dash line).

then the above property admits the following alternative form:∫ ∞

−∞
�m(x)�n(x) dx = 0, m �= n.

In summary, the eigenfunctions corresponding to the lowest energy levels are

�0(x) = N0
P0(x)

(1 + 2x2)
e−(1/2)x2

, E0 = −3/2

�3(x) = N3
P3(x)

(1 + 2x2)
e−(1/2)x2

, E3 = 3/2 = −3/2 + 3

�4(x) = N4
P4(x)

(1 + 2x2)
e−(1/2)x2

, E4 = 5/2 = −3/2 + 4

�5(x) = N5
P5(x)

(1 + 2x2)
e−(1/2)x2

, E5 = 7/2 = −3/2 + 5,

where the normalization constant is

Nk =
[
(k − 1)(k − 2)

2kk!
√

π

]1/2

.

The first three wavefunctions, �0(x),�3(x),�4(x), together with the corresponding
wavefunctions of the harmonic oscillator �0(x),�1(x),�2(x), are plotted in figures 3–5.

The energy E0 of the ground state �0(x) has been singled out of all the other values and
moved into the smaller value E0 = −3/2. The rest of the energy spectrum consists, as in the
pure harmonic case, of an infinite set of equidistant energy levels

En+1 = En + 1, n = 3, 4, 5, . . . .

Let us close this section with two comments on the new family of polynomials we have
obtained. First, definition (8) of Pn as a linear combination of only three Hermite polynomials
can be considered as a particular case of a situation known as a special linear combinations
of orthogonal polynomials (see [20, 21] and references therein). Finally, let us mention that
taking into account the ‘Rodrigues formula’ for the Hermite polynomials

Hn(x) = (−1)n ex2 d

dxn
e−x2

8
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Figure 4. Wavefunction �3 (continuous line) and wavefunction �1 of the harmonic oscillator
(dash line).

Figure 5. Wavefunction �4 (continuous line) and wavefunction �2 of the harmonic oscillator
(dash line).

we obtain

Pn(x) = (−1)n ex2

[
dn

dxn
+ 4n

dn−2

dxn−2
+ 4n(n − 3)

dn−4

dxn−4

]
e−x2

,

that must be considered as the ‘Rodrigues formula’ for this new family of orthogonal
polynomials.

5. Final comments and outlook

We have proved that the potential U0a(x) can be exactly solved in the particular case a2 = 1/2
and also that it possesses two very remarkable properties. First, the fundamental level �0 has
an energy E0 that is lower than in the pure harmonic case and, in a sense, is isolated of all
the other values. Second, the rest of the energy spectrum is endowed with the equidistance
property. Concerning the general case, with an arbitrary value for the parameter a, we have
only obtained the expression for the fundamental level (�0(a), E0(a)). The resolution of the
general case remains as an open question that deserves to be studied. Finally, let us also
mention that the analysis of this potential using the supersymmetric quantum mechanics as an
approach also seems an interesting matter to be studied.

9
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